How It Works



OnlineGeneratorMechanic
Do it yourself.....
Having problems with reaching a mechanic within your area for your generators? It could be frustrating.
OnlineGeneratorMechanic shows you that you can be a banker, lawyer e.t.c. and yet service/repair your generator yourself.
Awesome right!!?

OK, First let's see how generator works...

The Generator





Image result for generatorImage result for generator
Generators are useful appliances that supply electrical power during a power outage and prevent discontinuity of daily activities or disruption of business operations. Generators are available in different electrical and physical configurations for use in different applications. In the following sections, we will look at how a generator functions, the main components of a generator, and how a generator operates as a secondary source of electrical power in residential and industrial applications.

How does a generator work?
An electric generator is a device that converts mechanical energy obtained from an external source into electrical energy as the output.
It is important to understand that a generator does not actually ‘create’ electrical energy. Instead, it uses the mechanical energy supplied to it to force the movement of electric charges present in the wire of its windings through an external electric circuit. This flow of electric charges constitutes the output electric current supplied by the generator. This mechanism can be understood by considering the generator to be analogous to a water pump, which causes the flow of water but does not actually ‘create’ the water flowing through it.

Main components of a generatorThe main components of an electric generator can be broadly classified as follows (refer to illustration above):
(1) Engine
(2) Alternator
(3) Fuel System
(4) Voltage Regulator

A description of the main components of a generator is given below.
(1) Engine
The engine is the source of the input mechanical energy to the generator. The size of the engine is directly proportional to the maximum power output the generator can supply. There are several factors that you need to keep in mind while assessing the engine of your generator. The manufacturer of the engine should be consulted to obtain full engine operation specifications and maintenance schedules.

(a) Type of Fuel Used – Generator engines operate on a variety of fuels such as diesel, gasoline, propane (in liquefied or gaseous form), or natural gas. Smaller engines usually operate on gasoline while larger engines run on diesel, liquid propane, propane gas, or natural gas. Certain engines can also operate on a dual feed of both diesel and gas in a bi-fuel operation mode.

(b) Overhead Valve (OHV) Engines versus non-OHV Engines – OHV engines differ from other engines in that the intake and exhaust valves of the engine are located in the head of the engine’s cylinder as opposed to being mounted on the engine block. OHV engines have several advantages over other engines such as:
• Compact design
• Simpler operation mechanism
• Durability
• User-friendly in operations
• Low noise during operations
• Low emission levels
However, OHV-engines are also more expensive than other engines.

(c) Cast Iron Sleeve (CIS) in Engine Cylinder – The CIS is a lining in the cylinder of the engine. It reduces wear and tear, and ensures durability of the engine. Most OHV-engines are equipped with CIS but it is essential to check for this feature in the engine of a generator. The CIS is not an expensive feature but it plays an important role in engine durability especially if you need to use your generator often or for long durations.

(2) Alternator

The alternator, also known as the ‘genhead’, is the part of the generator that produces the electrical output from the mechanical input supplied by the engine. It contains an assembly of stationary and moving parts encased in a housing. The components work together to cause relative movement between the magnetic and electric fields, which in turn generates electricity.
 
(a) Stator – This is the stationary component. It contains a set of electrical conductors wound in coils over an iron core.

(b) Rotor / Armature – This is the moving component that produces a rotating magnetic field in any one of the following three ways:
(i) By induction – These are known as brushless alternators and are usually used in large   generators.
(ii) By permanent magnets – This is common in small alternator units.
(iii) By using an exciter – An exciter is a small source of direct current (DC) that energizes the rotor through an assembly of conducting slip rings and brushes.
The rotor generates a moving magnetic field around the stator, which induces a voltage difference between the windings of the stator. This produces the alternating current (AC) output of the generator.
The following are the factors that you need to keep in mind while assessing the alternator of a generator:
(a) Metal versus Plastic Housing – An all-metal design ensures durability of the alternator. Plastic housings get deformed with time and cause the moving parts of the alternator to be exposed. This increases wear and tear and more importantly, is hazardous to the user.

(b) Ball Bearings versus Needle Bearings – Ball bearings are preferred and last longer.

(c) Brushless Design – An alternator that does not use brushes requires less maintenance and also produces cleaner power.

(3) Fuel System

The fuel tank usually has sufficient capacity to keep the generator operational for 6 to 8 hours on an average. In the case of small generator units, the fuel tank is a part of the generator’s skid base or is mounted on top of the generator frame. For commercial applications, it may be necessary to erect and install an external fuel tank. All such installations are subject to the approval of the City Planning Division.  Click the following link for further details regarding fuel tanks for generators.
Common features of the fuel system include the following:

(a) Pipe connection from fuel tank to engine – The supply line directs fuel from the tank to the engine and the return line directs fuel from the engine to the tank.

(b) Ventilation pipe for fuel tank – The fuel tank has a ventilation pipe to prevent the build-up of pressure or vacuum during refilling and drainage of the tank. When you refill the fuel tank, ensure metal-to-metal contact between the filler nozzle and the fuel tank to avoid sparks.

(c) Overflow connection from fuel tank to the drain pipe – This is required so that any overflow during refilling of the tank does not cause spillage of the liquid on the generator set.

(d) Fuel pump – This transfers fuel from the main storage tank to the day tank. The fuel pump is typically electrically operated.

(e) Fuel Water Separator / Fuel Filter – This separates water and foreign matter from the liquid fuel to protect other components of the generator from corrosion and contamination.

(f) Fuel Injector – This atomizes the liquid fuel and sprays the required amount of fuel into the combustion chamber of the engine.

(4) Voltage Regulator
As the name implies, this component regulates the output voltage of the generator. The mechanism is described below against each component that plays a part in the cyclical process of voltage regulation.
 Voltage Regulator: Conversion of AC Voltage to DC Current – The voltage regulator takes up a small portion of the generator’s output of AC voltage and converts it into DC current. The voltage regulator then feeds this DC current to a set of secondary windings in the stator, known as exciter windings.

Comments

Popular posts from this blog

HOW TO SERVICE YOUR SMALL GENERATOR CARBURETOR

"HOW TO REMOVE CARBON PILE UPS FROM EXHAUST PORT AND MUFFLER"

"VALVE ADJUSTMENT & REPAIRS"